Skip to main content

Server room

A server room is a room, usually air-conditioned, devoted to the continuous operation of computer servers. An entire building or station devoted to this purpose is a data center.
The computers in server rooms are usually headless systems that can be operated remotely via KVM switch or remote administration software, such as Secure Shell (ssh), VNC, and remote desktop.[1][2][3][4][5]
Climate is one of the factors that affects the energy consumption and environmental impact of a server room. In areas where climate favors cooling and an abundance of renewable electricity, the environmental effects will be more moderate. Thus, countries with favorable conditions such as Canada,[6] Finland,[7] Sweden,[8] and Switzerland[9] are trying to attract more companies to site their server rooms there.

Design considerations[edit]

Building a server or computer room requires detailed attention to six main design considerations: [10]

Location[edit]

Computer or server room location is the first consideration, even before considering the layout of the room’s contents. Most designers agree that, where possible, the computer room should not be built where one of its walls is an exterior wall of the building. Exterior walls can often be quite damp and can contain water pipes that could burst and drench the equipment. Avoiding exterior windows means avoiding a security risk, and breakages. Avoiding both the top floors and basements means avoiding flooding, and leaks in the case of roofs. Lastly, server rooms should be centrally located because of the horizontal cabling involved which extends from this room to devices in other rooms. If a centralized computer room is not feasible, server closets on each floor may be an option. This is where computer, network and phone equipment are housed in closets and each closet is stacked above each other on the floor that they service.
In addition to the hazards of exterior walls, designers need to evaluate any potential sources of interference in proximity to the computer room. Designing such a room means keeping clear or radio transmitters, and electrical interference from power plants or lift rooms, etc.
Other physical design considerations range from room size, door sizes and access ramps (to get equipment in and out) to cable organization, physical security and maintenance access.

Air conditioning[edit]

Computer equipment generates heat, and is sensitive to heat, humidity, and dust, but also the need for very high resilience and failover requirements. Maintaining a stable temperature and humidity within tight tolerances is critical to IT system reliability.
In most server rooms "close control air conditioning" systems, also known as PAC (precision air conditioning) systems, are installed. These systems control temperature, humidity and particle filtration within tight tolerances 24 hours a day and can be remotely monitored. They can have built-in automatic alerts when conditions within the server room move outside defined tolerances.
Air conditioning designs for most computer or server rooms will vary depending on various design considerations, but they are generally one of two types: "up-flow" and "down-flow" configurations.

Up-flow air conditioning[edit]

This type of air conditioning draws air into the front of the air handler unit (AHU), cools the air over the heat exchanger, then distributes the cooled air out through the top or through duct work. This air conditioning configuration is well suited to retro-fitted computer rooms when raised floors are either of inadequate depth or do not exist at all.

Down-flow air conditioning[edit]

Typically, this type of air conditioning unit draws the air into the top of the air handling unit, cools the air over the heat exchanger, then distributes the air out of the bottom into the floor void. This conditioned air is then discharged into the server room via strategically placed floor grilles and onwards to equipment racks. These systems are well suited to new office buildings where the design can encompass raised floors suitable for ducting to computer racks.

Hot aisle / cold aisle[edit]

Wikimedia Servers-0051 10
Hot aisle / cold aisle configurations switch the forward direction of every other row so that two rows face each other and have their backs to the next row. This avoids the hot exhaust of one row of racks being sucked into the cooling intake of an adjacent row. Air conditioning ducts or vents are located between the two fronts since most equipment vents front to rear. A drawback of unenclosed hot aisle / cold aisle configuration is that there is a significant amount of uncontrolled or bypass mixing of hot and cold air outside the equipment. [11]

Aisle containment[edit]

In an aisle containment configuration one of the aisle is enclosed with walls, ceilings and access doors to create an enclosed space. Aisle containment does not allow bypass mixing of hot and cold air. This forces all cold to hot air transformation to happen inside the equipment. Careful attention is paid to avoid open rack slots or other air flow leaks to make the front of the rack a continuous wall of the contained aisle. [12]

Liquid cooling and energy efficiency[edit]

The adoption of liquid cooling technologies has allowed for highly efficient server room designs. When liquid cooling technologies are applied, server rooms don't rely on energy consuming air conditioning systems any more. Instead, all heat is captured in liquid, which can be rejected with a simple and efficient dry cooler.
Another factor of using liquid is the potential for heat reuse. Server rooms are slowly becoming part of heating systems and integrated within the same rooms, or connected to the utility space of buildings through a water circuit. This allows the heating installation to utilise server heat before using alternate means of heating. Temperature chaining principles are slowly adopted to generate sufficient temperature levels for reuse scenarios.

Fire protection[edit]

The fire protection system's main goal should be to detect and alert of fire in the early stages, then bring fire under control without disrupting the flow of business and without threatening the personnel in the facility. Server room fire suppression technology has been around for as long as there have been server rooms. Traditionally, most computer rooms used Halon gas, but this has been shown to be environmentally unfriendly (ozone depleting) and unsafe for humans. Modern computer rooms use combinations of inert gases such as Nitrogen, Argon and CO2. Other solutions include clean chemical agents such as FM200 and also hypoxic air solutions that keep oxygen levels down. To prevent fires from spreading due to data cable and cord heat generation, organizations have also used those that are coated with FEP tubing. This plastic reduces heat generation and safeguards material metal efficiently.[13]

Future-proofing[edit]

The demands of server rooms are constantly changing as organizations evolve and grow and as technology changes. An essential part of computer room design is future proofing so that new requirements can be accommodated with minimal effort. As computing requirements grow, so will a server room's power and cooling requirements. As a rough guide, for every additional 100 kW of equipment installed, a further 30 kW of energy is required to cool it. As a result, air conditioning designs will need to have scalability designed in from the outset.
The choice of racks in a server room is usually the prime factor when determining space. Many organisations use telco racks or enclosed cabinets to make the most of the space they have. Today, with servers that are one-rack-unit (1U) high and new blade servers, a single 19- or 23-inch rack can accommodate anywhere from 42 to hundreds of servers.

Redundancy[edit]

If the computer systems in a server room are mission critical, removing single points of failure and common-mode failures may be of high importance.[14] The level of desired redundancy is determined by factors such as whether the organisation can tolerate interruption whilst failover systems are activated, or must they be seamless without any business impacts. Other than computer hardware redundancy, the main consideration here is the provisioning of failover power supplies and cooling.

Comments

Popular posts from this blog

OWASP Top 10 Threats and Mitigations Exam - Single Select

Last updated 4 Aug 11 Course Title: OWASP Top 10 Threats and Mitigation Exam Questions - Single Select 1) Which of the following consequences is most likely to occur due to an injection attack? Spoofing Cross-site request forgery Denial of service   Correct Insecure direct object references 2) Your application is created using a language that does not support a clear distinction between code and data. Which vulnerability is most likely to occur in your application? Injection   Correct Insecure direct object references Failure to restrict URL access Insufficient transport layer protection 3) Which of the following scenarios is most likely to cause an injection attack? Unvalidated input is embedded in an instruction stream.   Correct Unvalidated input can be distinguished from valid instructions. A Web application does not validate a client’s access to a resource. A Web action performs an operation on behalf of the user without checking a shared sec

CKA Simulator Kubernetes 1.22

  https://killer.sh Pre Setup Once you've gained access to your terminal it might be wise to spend ~1 minute to setup your environment. You could set these: alias k = kubectl                         # will already be pre-configured export do = "--dry-run=client -o yaml"     # k get pod x $do export now = "--force --grace-period 0"   # k delete pod x $now Vim To make vim use 2 spaces for a tab edit ~/.vimrc to contain: set tabstop=2 set expandtab set shiftwidth=2 More setup suggestions are in the tips section .     Question 1 | Contexts Task weight: 1%   You have access to multiple clusters from your main terminal through kubectl contexts. Write all those context names into /opt/course/1/contexts . Next write a command to display the current context into /opt/course/1/context_default_kubectl.sh , the command should use kubectl . Finally write a second command doing the same thing into /opt/course/1/context_default_no_kubectl.sh , but without the use of k

标 题: 关于Daniel Guo 律师

发信人: q123452017 (水天一色), 信区: I140 标  题: 关于Daniel Guo 律师 关键字: Daniel Guo 发信站: BBS 未名空间站 (Thu Apr 26 02:11:35 2018, 美东) 这些是lz根据亲身经历在 Immigration版上发的帖以及一些关于Daniel Guo 律师的回 帖,希望大家不要被一些马甲帖广告帖所骗,慎重考虑选择律师。 WG 和Guo两家律师对比 1. fully refund的合约上的区别 wegreened家是case不过只要第二次没有file就可以fully refund。郭家是要两次case 没过才给refund,而且只要第二次pl draft好律师就可以不退任何律师费。 2. 回信速度 wegreened家一般24小时内回信。郭律师是在可以快速回复的时候才回复很快,对于需 要时间回复或者是不愿意给出确切答复的时候就回复的比较慢。 比如:lz问过郭律师他们律所在nsc区域最近eb1a的通过率,大家也知道nsc现在杀手如 云,但是郭律师过了两天只回复说让秘书update最近的case然后去网页上查,但是上面 并没有写明tsc还是nsc。 lz还问过郭律师关于准备ps (他要求的文件)的一些问题,模版上有的东西不是很清 楚,但是他一般就是把模版上的东西再copy一遍发过来。 3. 材料区别 (推荐信) 因为我只收到郭律师写的推荐信,所以可以比下两家推荐信 wegreened家推荐信写的比较长,而且每封推荐信会用不同的语气和风格,会包含lz写 的research summary里面的某个方面 郭家四封推荐信都是一个格式,一种语气,连地址,信的称呼都是一样的,怎么看四封 推荐信都是同一个人写出来的。套路基本都是第一段目的,第二段介绍推荐人,第三段 某篇或几篇文章的abstract,最后结论 4. 前期材料准备 wegreened家要按照他们的模版准备一个十几页的research summary。 郭律师在签约之前说的是只需要准备五页左右的summary,但是在lz签完约收到推荐信 ,郭律师又发来一个很长的ps要lz自己填,而且和pl的格式基本差不多。 总结下来,申请自己上心最重要。但是如果选律师,lz更倾向于wegreened,