Skip to main content

Facebook shares some secrets on making MySQL scale

When you’re storing every transaction for 800 million users and handling more than 60 million queries per second, your database environment had better be something special. Many readers might see these numbers and think NoSQL, but Facebook held a Tech Talk on Monday night explaining how it built a MySQL (s orcl) environment capable of handling everything the company needs in terms of scale, performance and availability.
Over the summer, I reported on Michael Stonebraker’s stance that Facebook is trapped in a MySQL “fate worse than death” because of its reliance on an outdated database paired with a complex sharding and caching strategy (read the comments and this follow-up post for a bevy of opinions on the validity of Stonebraker’s stance on SQL). Facebook declined an official comment at the time, but last night’s night talk proved to me that Stonebraker (and I) might have been wrong.

Keeping up with performance

Kicking off the event, Facebook’s Domas Mituzas shared some stats that illustrate the importance of its MySQL user database:
  • MySQL handles pretty much every user interaction: likes, shares, status updates, alerts, requests, etc.
  • Facebook has 800 million users; 500 million of them visit the site daily.
  • 350 million mobile users are constantly pushing and pulling status updates
  • 7 million applications and web sites are integrated into the Facebook platform
  • User data sets are made even larger by taking into account both scope and time
And, as Mituzas pointed out, everything on Facebook is social, so every action has a ripple effect that spreads beyond that specific user. “It’s not just about me accessing some object,” he said. “It’s also about analyzing and ranking through that include all my friends’ activities.” The result (although Mituzas noted these numbers are somewhat outdated) is 60 million queries per second, and nearly 4 million row changes per second.
Facebook shards, or splits its database into numerous distinct sections, because of the sheer volume of the data it stores (a number it doesn’t share), but it caches extensively in order to write all these transactions in a hurry. In fact, most queries (more than 90 percent) never hit the database at all but only touch the cache layer. Facebook relies heavily on the open-source memcached MySQL caching tool, as well as it custom-built Flashcache module for caching data on solid-state drives.

Keeping up with scale

Speaking of drives, and hardware generally, Facebook’s Mark Konetchy took the stage after Mituzas to share some data points on the growth of Facebook’s MySQL infrastructure. Although he made sure to point out that the “buzzkills at legal” won’t let him share actual numbers, he was able to point to 3x server growth across all data centers over the past two years, 7x growth in raw user data, and 20x growth in all user data (which includes replicated data). The median data-set size per physical host has increased almost 5x since Jan. 2010, and maximum data-set size per host has increased 10x.
Konetchy credits the ability to store so much more data per host on software-performance improvements made by Facebook’s MySQL team, as well as on better server technology. Facebook’s MySQL user database is composed of approximately 60 percent hard disk drives, 20 percent SSDs and 10 percent hybrid HDD-plus-SSD servers running Flashcache.
However, Facebook wants to buy fewer servers while still improving MySQL performance. Looking forward, Konetchy said some primary objectives are to automate the splitting of large data sets onto underutilized hardware, to improve MySQL compression and to move more data to the Hadoop-based HBase data store when appropriate. NoSQL databases such as HBase (which powers Facebook Messages) weren’t really around when Facebook built its MySQL environment, so there likely are unstructured or semistructured data currently in MySQL that are better suited for HBase.

With all this growth, why MySQL?

The logical question when one sees rampant growth and performance requirements like this is “Why stick with MySQL?”. As Stonebraker pointed out over the summer, both NoSQL and NewSQL are arguably better suited to large-scale web applications than is MySQL. Perhaps, but Facebook begs to differ.
Facebook’s Mark Callaghan, who spent eight years as a “principal member of the technical staff” at Oracle (s orcl) , explained that using open-source software lets Facebook operate with “orders of magnitude” more machines than people, which means lots of money saved on software licenses and lots of time put into working on new features (many of which, including the rather-cool Online Schema Change, are discussed in the talk).
Additionally, he said, the patch and update cycles at companies like Oracle are far slower than what Facebook can get by working on issues internally and with an open-source community. The same holds true for general support issues, which Facebook can resolve itself in hours instead of waiting days for commercial support.
On the performance front, Callaghan noted, Facebook might find some interesting things if large vendors allowed it to benchmark their products. But they won’t, and they won’t let Facebook publish the results, so MySQL it is. Plus, he said, you actually can tune MySQL to perform very fast per node if you know what you’re doing — and Facebook has the best MySQL team around. That also helps keep costs down because it requires fewer servers.
Callaghan was more open to using NoSQL databases, but said they’re still not quite ready for primetime, especially for mission-critical workloads such as Facebook’s user database. The implementations just aren’t as mature, he said, and there are no published cases of NoSQL databases operating at the scale of Facebook’s MySQL database. And, Callaghan noted, the HBase engineering team at Facebook is quite a bit larger than the MySQL engineering team, suggesting that tuning HBase to meet Facebook’s needs is more resource-intensive process than is tuning MySQL at this point.
The whole debate about Facebook and MySQL was never really about whether it should be using it, but rather about how much work it has put into MySQL to make it work at Facebook scale. The answer, clearly, is a lot, but Facebook seems to have it down to an art at this point, and everyone appears pretty content with what they have in place and how they plan to improve it. It doesn’t seem like a fate worse than death, and if it had to start from scratch, I don’t get the impression Facebook would do too much differently, even with the new database offerings available today.

Comments

Popular posts from this blog

OWASP Top 10 Threats and Mitigations Exam - Single Select

Last updated 4 Aug 11 Course Title: OWASP Top 10 Threats and Mitigation Exam Questions - Single Select 1) Which of the following consequences is most likely to occur due to an injection attack? Spoofing Cross-site request forgery Denial of service   Correct Insecure direct object references 2) Your application is created using a language that does not support a clear distinction between code and data. Which vulnerability is most likely to occur in your application? Injection   Correct Insecure direct object references Failure to restrict URL access Insufficient transport layer protection 3) Which of the following scenarios is most likely to cause an injection attack? Unvalidated input is embedded in an instruction stream.   Correct Unvalidated input can be distinguished from valid instructions. A Web application does not validate a client’s access to a resource. A Web action performs an operation on behalf of the user without checking a shared sec

CKA Simulator Kubernetes 1.22

  https://killer.sh Pre Setup Once you've gained access to your terminal it might be wise to spend ~1 minute to setup your environment. You could set these: alias k = kubectl                         # will already be pre-configured export do = "--dry-run=client -o yaml"     # k get pod x $do export now = "--force --grace-period 0"   # k delete pod x $now Vim To make vim use 2 spaces for a tab edit ~/.vimrc to contain: set tabstop=2 set expandtab set shiftwidth=2 More setup suggestions are in the tips section .     Question 1 | Contexts Task weight: 1%   You have access to multiple clusters from your main terminal through kubectl contexts. Write all those context names into /opt/course/1/contexts . Next write a command to display the current context into /opt/course/1/context_default_kubectl.sh , the command should use kubectl . Finally write a second command doing the same thing into /opt/course/1/context_default_no_kubectl.sh , but without the use of k

标 题: 关于Daniel Guo 律师

发信人: q123452017 (水天一色), 信区: I140 标  题: 关于Daniel Guo 律师 关键字: Daniel Guo 发信站: BBS 未名空间站 (Thu Apr 26 02:11:35 2018, 美东) 这些是lz根据亲身经历在 Immigration版上发的帖以及一些关于Daniel Guo 律师的回 帖,希望大家不要被一些马甲帖广告帖所骗,慎重考虑选择律师。 WG 和Guo两家律师对比 1. fully refund的合约上的区别 wegreened家是case不过只要第二次没有file就可以fully refund。郭家是要两次case 没过才给refund,而且只要第二次pl draft好律师就可以不退任何律师费。 2. 回信速度 wegreened家一般24小时内回信。郭律师是在可以快速回复的时候才回复很快,对于需 要时间回复或者是不愿意给出确切答复的时候就回复的比较慢。 比如:lz问过郭律师他们律所在nsc区域最近eb1a的通过率,大家也知道nsc现在杀手如 云,但是郭律师过了两天只回复说让秘书update最近的case然后去网页上查,但是上面 并没有写明tsc还是nsc。 lz还问过郭律师关于准备ps (他要求的文件)的一些问题,模版上有的东西不是很清 楚,但是他一般就是把模版上的东西再copy一遍发过来。 3. 材料区别 (推荐信) 因为我只收到郭律师写的推荐信,所以可以比下两家推荐信 wegreened家推荐信写的比较长,而且每封推荐信会用不同的语气和风格,会包含lz写 的research summary里面的某个方面 郭家四封推荐信都是一个格式,一种语气,连地址,信的称呼都是一样的,怎么看四封 推荐信都是同一个人写出来的。套路基本都是第一段目的,第二段介绍推荐人,第三段 某篇或几篇文章的abstract,最后结论 4. 前期材料准备 wegreened家要按照他们的模版准备一个十几页的research summary。 郭律师在签约之前说的是只需要准备五页左右的summary,但是在lz签完约收到推荐信 ,郭律师又发来一个很长的ps要lz自己填,而且和pl的格式基本差不多。 总结下来,申请自己上心最重要。但是如果选律师,lz更倾向于wegreened,