Unsolved problems in physics: Why does the universe have so much more matter than antimatter?
One of the unsolved theoretical questions in physics is why the universe is made chiefly of matter, rather than consisting of equal parts of matter and antimatter. It can be demonstrated that, to create an imbalance in matter and antimatter from an initial condition of balance, the Sakharov conditions must be satisfied, one of which is the existence of CP violation during the extreme conditions of the first seconds after the Big Bang. Explanations which do not involve CP violation are less plausible, since they rely on the assumption that the matter–antimatter imbalance was present at the beginning, or on other admittedly exotic assumptions.
The Big Bang should have produced equal amounts of matter and antimatter if CP-symmetry was preserved; as such, there should have been total cancellation of both—protons should have cancelled with antiprotons, electrons with antielectrons, neutrons with antineutrons, and so on. This would have resulted in a sea of radiation in the universe with no matter. Since this is not the case, after the Big Bang, physical laws must have acted differently for matter and antimatter, i.e. violating CP-symmetry.
The Standard Model contains only two ways to break CP-symmetry. The first of these, discussed above, is in the QCD Lagrangian, and has not been found experimentally; but one would expect this to lead to either no CP violation or a CP violation that is many, many orders of magnitude too large. The second of these, involving the weak force, has been experimentally verified, but can account for only a small portion of CP violation. It is predicted to be sufficient for a net mass of normal matter equivalent to only a single galaxy in the known universe.
Since the Standard Model does not accurately predict this discrepancy, it would seem that the current Standard Model has gaps (other than the obvious one of gravity and related matters) or physics is otherwise in error. Moreover, experiments to probe these CP-related gaps may require the practically impossible-to-obtain energies that may be necessary to probe the gravity-related gaps (see Planck mass).
One of the unsolved theoretical questions in physics is why the universe is made chiefly of matter, rather than consisting of equal parts of matter and antimatter. It can be demonstrated that, to create an imbalance in matter and antimatter from an initial condition of balance, the Sakharov conditions must be satisfied, one of which is the existence of CP violation during the extreme conditions of the first seconds after the Big Bang. Explanations which do not involve CP violation are less plausible, since they rely on the assumption that the matter–antimatter imbalance was present at the beginning, or on other admittedly exotic assumptions.
The Big Bang should have produced equal amounts of matter and antimatter if CP-symmetry was preserved; as such, there should have been total cancellation of both—protons should have cancelled with antiprotons, electrons with antielectrons, neutrons with antineutrons, and so on. This would have resulted in a sea of radiation in the universe with no matter. Since this is not the case, after the Big Bang, physical laws must have acted differently for matter and antimatter, i.e. violating CP-symmetry.
The Standard Model contains only two ways to break CP-symmetry. The first of these, discussed above, is in the QCD Lagrangian, and has not been found experimentally; but one would expect this to lead to either no CP violation or a CP violation that is many, many orders of magnitude too large. The second of these, involving the weak force, has been experimentally verified, but can account for only a small portion of CP violation. It is predicted to be sufficient for a net mass of normal matter equivalent to only a single galaxy in the known universe.
Since the Standard Model does not accurately predict this discrepancy, it would seem that the current Standard Model has gaps (other than the obvious one of gravity and related matters) or physics is otherwise in error. Moreover, experiments to probe these CP-related gaps may require the practically impossible-to-obtain energies that may be necessary to probe the gravity-related gaps (see Planck mass).
Comments
Post a Comment
https://gengwg.blogspot.com/