Page size is usually determined by processor architecture. Traditionally, pages in a system had uniform size, for example 4096 bytes.
However, processor designs often allow two or more, sometimes
simultaneous, page sizes due to the benefits and penalties. There are
several points that can factor into choosing the best page size.
As an example, assume the page size is 1024KB. If a process allocates 1025KB, two pages must be used, resulting in 1023KB of unused space (where one page fully consumes 1024KB and the other only 1KB).
Page size versus page table size
A system with a smaller page size uses more pages, requiring a page table that occupies more space. For example, if a 232 virtual address space is mapped to 4KB (212 bytes) pages, the number of virtual pages is 220 =( 232 / 212). However, if the page size is increased to 32KB (215 bytes), only 217 pages are required. A multi-level paging algorithm can decrease the memory cost of allocating a large page table for each process by further dividing the page table up into smaller tables, effectively paging the page table.Page size versus TLB usage
Since every access to memory must be mapped from virtual to physical address, reading the page table every time can be quite costly. Therefore, a very fast kind of cache, the Translation Lookaside Buffer (TLB), is often used. The TLB is of limited size, and when it cannot satisfy a given request (a TLB miss) the page tables must be searched manually (either in hardware or software, depending on the architecture) for the correct mapping. Larger page sizes mean that a TLB cache of the same size can keep track of larger amounts of memory, which avoids the costly TLB misses.Internal fragmentation of pages
Rarely do processes require the use of an exact number of pages. As a result, the last page will likely only be partially full, wasting some amount of memory. Larger page sizes increase the potential for wasted memory this way, as more potentially unused portions of memory are loaded into main memory. Smaller page sizes ensure a closer match to the actual amount of memory required in an allocation.As an example, assume the page size is 1024KB. If a process allocates 1025KB, two pages must be used, resulting in 1023KB of unused space (where one page fully consumes 1024KB and the other only 1KB).
Comments
Post a Comment
https://gengwg.blogspot.com/