Skip to main content

Authenticating with Bootstrap Tokens

 

Bootstrap tokens are a simple bearer token that is meant to be used when creating new clusters or joining new nodes to an existing cluster. It was built to support kubeadm, but can be used in other contexts for users that wish to start clusters without kubeadm. It is also built to work, via RBAC policy, with the Kubelet TLS Bootstrapping system.

Bootstrap Tokens Overview

Bootstrap Tokens are defined with a specific type (bootstrap.kubernetes.io/token) of secrets that lives in the kube-system namespace. These Secrets are then read by the Bootstrap Authenticator in the API Server. Expired tokens are removed with the TokenCleaner controller in the Controller Manager. The tokens are also used to create a signature for a specific ConfigMap used in a "discovery" process through a BootstrapSigner controller.

Token Format

Bootstrap Tokens take the form of abcdef.0123456789abcdef. More formally, they must match the regular expression [a-z0-9]{6}\.[a-z0-9]{16}.

The first part of the token is the "Token ID" and is considered public information. It is used when referring to a token without leaking the secret part used for authentication. The second part is the "Token Secret" and should only be shared with trusted parties.

Enabling Bootstrap Token Authentication

The Bootstrap Token authenticator can be enabled using the following flag on the API server:

--enable-bootstrap-token-auth

When enabled, bootstrapping tokens can be used as bearer token credentials to authenticate requests against the API server.

Authorization: Bearer 07401b.f395accd246ae52d

Tokens authenticate as the username system:bootstrap:<token id> and are members of the group system:bootstrappers. Additional groups may be specified in the token's Secret.

Expired tokens can be deleted automatically by enabling the tokencleaner controller on the controller manager.

--controllers=*,tokencleaner

Bootstrap Token Secret Format

Each valid token is backed by a secret in the kube-system namespace. You can find the full design doc here.

Here is what the secret looks like.

apiVersion: v1
kind: Secret
metadata:
  # Name MUST be of form "bootstrap-token-<token id>"
  name: bootstrap-token-07401b
  namespace: kube-system

# Type MUST be 'bootstrap.kubernetes.io/token'
type: bootstrap.kubernetes.io/token
stringData:
  # Human readable description. Optional.
  description: "The default bootstrap token generated by 'kubeadm init'."

  # Token ID and secret. Required.
  token-id: 07401b
  token-secret: f395accd246ae52d

  # Expiration. Optional.
  expiration: 2017-03-10T03:22:11Z

  # Allowed usages.
  usage-bootstrap-authentication: "true"
  usage-bootstrap-signing: "true"

  # Extra groups to authenticate the token as. Must start with "system:bootstrappers:"
  auth-extra-groups: system:bootstrappers:worker,system:bootstrappers:ingress

The type of the secret must be bootstrap.kubernetes.io/token and the name must be bootstrap-token-<token id>. It must also exist in the kube-system namespace.

The usage-bootstrap-* members indicate what this secret is intended to be used for. A value must be set to true to be enabled.

  • usage-bootstrap-authentication indicates that the token can be used to authenticate to the API server as a bearer token.
  • usage-bootstrap-signing indicates that the token may be used to sign the cluster-info ConfigMap as described below.

The expiration field controls the expiry of the token. Expired tokens are rejected when used for authentication and ignored during ConfigMap signing. The expiry value is encoded as an absolute UTC time using RFC3339. Enable the tokencleaner controller to automatically delete expired tokens.

Token Management with kubeadm

You can use the kubeadm tool to manage tokens on a running cluster. See the kubeadm token docs for details.

ConfigMap Signing

In addition to authentication, the tokens can be used to sign a ConfigMap. This is used early in a cluster bootstrap process before the client trusts the API server. The signed ConfigMap can be authenticated by the shared token.

Enable ConfigMap signing by enabling the bootstrapsigner controller on the Controller Manager.

--controllers=*,bootstrapsigner

The ConfigMap that is signed is cluster-info in the kube-public namespace. The typical flow is that a client reads this ConfigMap while unauthenticated and ignoring TLS errors. It then validates the payload of the ConfigMap by looking at a signature embedded in the ConfigMap.

The ConfigMap may look like this:

apiVersion: v1
kind: ConfigMap
metadata:
  name: cluster-info
  namespace: kube-public
data:
  jws-kubeconfig-07401b: eyJhbGciOiJIUzI1NiIsImtpZCI6IjA3NDAxYiJ9..tYEfbo6zDNo40MQE07aZcQX2m3EB2rO3NuXtxVMYm9U
  kubeconfig: |
    apiVersion: v1
    clusters:
    - cluster:
        certificate-authority-data: <really long certificate data>
        server: https://10.138.0.2:6443
      name: ""
    contexts: []
    current-context: ""
    kind: Config
    preferences: {}
    users: []    

The kubeconfig member of the ConfigMap is a config file with only the cluster information filled out. The key thing being communicated here is the certificate-authority-data. This may be expanded in the future.

The signature is a JWS signature using the "detached" mode. To validate the signature, the user should encode the kubeconfig payload according to JWS rules (base64 encoded while discarding any trailing =). That encoded payload is then used to form a whole JWS by inserting it between the 2 dots. You can verify the JWS using the HS256 scheme (HMAC-SHA256) with the full token (e.g. 07401b.f395accd246ae52d) as the shared secret. Users must verify that HS256 is used.

Consult the kubeadm implementation details section for more information.

Comments

Popular posts from this blog

OWASP Top 10 Threats and Mitigations Exam - Single Select

Last updated 4 Aug 11 Course Title: OWASP Top 10 Threats and Mitigation Exam Questions - Single Select 1) Which of the following consequences is most likely to occur due to an injection attack? Spoofing Cross-site request forgery Denial of service   Correct Insecure direct object references 2) Your application is created using a language that does not support a clear distinction between code and data. Which vulnerability is most likely to occur in your application? Injection   Correct Insecure direct object references Failure to restrict URL access Insufficient transport layer protection 3) Which of the following scenarios is most likely to cause an injection attack? Unvalidated input is embedded in an instruction stream.   Correct Unvalidated input can be distinguished from valid instructions. A Web application does not validate a client’s access to a resource. A Web action performs an operation on behalf of the user without checking a shared sec

CKA Simulator Kubernetes 1.22

  https://killer.sh Pre Setup Once you've gained access to your terminal it might be wise to spend ~1 minute to setup your environment. You could set these: alias k = kubectl                         # will already be pre-configured export do = "--dry-run=client -o yaml"     # k get pod x $do export now = "--force --grace-period 0"   # k delete pod x $now Vim To make vim use 2 spaces for a tab edit ~/.vimrc to contain: set tabstop=2 set expandtab set shiftwidth=2 More setup suggestions are in the tips section .     Question 1 | Contexts Task weight: 1%   You have access to multiple clusters from your main terminal through kubectl contexts. Write all those context names into /opt/course/1/contexts . Next write a command to display the current context into /opt/course/1/context_default_kubectl.sh , the command should use kubectl . Finally write a second command doing the same thing into /opt/course/1/context_default_no_kubectl.sh , but without the use of k

标 题: 关于Daniel Guo 律师

发信人: q123452017 (水天一色), 信区: I140 标  题: 关于Daniel Guo 律师 关键字: Daniel Guo 发信站: BBS 未名空间站 (Thu Apr 26 02:11:35 2018, 美东) 这些是lz根据亲身经历在 Immigration版上发的帖以及一些关于Daniel Guo 律师的回 帖,希望大家不要被一些马甲帖广告帖所骗,慎重考虑选择律师。 WG 和Guo两家律师对比 1. fully refund的合约上的区别 wegreened家是case不过只要第二次没有file就可以fully refund。郭家是要两次case 没过才给refund,而且只要第二次pl draft好律师就可以不退任何律师费。 2. 回信速度 wegreened家一般24小时内回信。郭律师是在可以快速回复的时候才回复很快,对于需 要时间回复或者是不愿意给出确切答复的时候就回复的比较慢。 比如:lz问过郭律师他们律所在nsc区域最近eb1a的通过率,大家也知道nsc现在杀手如 云,但是郭律师过了两天只回复说让秘书update最近的case然后去网页上查,但是上面 并没有写明tsc还是nsc。 lz还问过郭律师关于准备ps (他要求的文件)的一些问题,模版上有的东西不是很清 楚,但是他一般就是把模版上的东西再copy一遍发过来。 3. 材料区别 (推荐信) 因为我只收到郭律师写的推荐信,所以可以比下两家推荐信 wegreened家推荐信写的比较长,而且每封推荐信会用不同的语气和风格,会包含lz写 的research summary里面的某个方面 郭家四封推荐信都是一个格式,一种语气,连地址,信的称呼都是一样的,怎么看四封 推荐信都是同一个人写出来的。套路基本都是第一段目的,第二段介绍推荐人,第三段 某篇或几篇文章的abstract,最后结论 4. 前期材料准备 wegreened家要按照他们的模版准备一个十几页的research summary。 郭律师在签约之前说的是只需要准备五页左右的summary,但是在lz签完约收到推荐信 ,郭律师又发来一个很长的ps要lz自己填,而且和pl的格式基本差不多。 总结下来,申请自己上心最重要。但是如果选律师,lz更倾向于wegreened,