Skip to main content

Overloading operators

C++ incorporates the option to use standard operators to perform operations with classes in addition to with fundamental types. For example:


1
2
int a, b, c;
a = b + c;


This is obviously valid code in C++, since the different variables of the addition are all fundamental types. Nevertheless, it is not so obvious that we could perform an operation similar to the following one:

1
2
3
4
5
struct {
  string product;
  float price;
} a, b, c;
a = b + c; 


In fact, this will cause a compilation error, since we have not defined the behavior our class should have with addition operations. However, thanks to the C++ feature to overload operators, we can design classes able to perform operations using standard operators. Here is a list of all the operators that can be overloaded:

Overloadable operators
+    -    *    /    =    <    >    +=   -=   *=   /=   <<   >>
<<=  >>=  ==   !=   <=   >=   ++   --   %    &    ^    !    |
~    &=   ^=   |=   &&   ||   %=   []   ()   ,    ->*  ->   new 
delete    new[]     delete[]

To overload an operator in order to use it with classes we declare operator functions, which are regular functions whose names are the operator keyword followed by the operator sign that we want to overload. The format is:

type operator sign (parameters) { /*...*/ }

Here you have an example that overloads the addition operator (+). We are going to create a class to store bidimensional vectors and then we are going to add two of them: a(3,1) and b(1,2). The addition of two bidimensional vectors is an operation as simple as adding the two x coordinates to obtain the resulting x coordinate and adding the two y coordinates to obtain the resulting y. In this case the result will be (3+1,1+2) = (4,3).

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
// vectors: overloading operators example
#include 
using namespace std;

class CVector {
  public:
    int x,y;
    CVector () {};
    CVector (int,int);
    CVector operator + (CVector);
};

CVector::CVector (int a, int b) {
  x = a;
  y = b;
}

CVector CVector::operator+ (CVector param) {
  CVector temp;
  temp.x = x + param.x;
  temp.y = y + param.y;
  return (temp);
}

int main () {
  CVector a (3,1);
  CVector b (1,2);
  CVector c;
  c = a + b;
  cout << c.x << "," << c.y;
  return 0;
}
4,3


It may be a little confusing to see so many times the CVector identifier. But, consider that some of them refer to the class name (type) CVector and some others are functions with that name (constructors must have the same name as the class). Do not confuse them:

1
2
CVector (int, int);            // function name CVector (constructor)
CVector operator+ (CVector);   // function returns a CVector 


The function operator+ of class CVector is the one that is in charge of overloading the addition operator (+). This function can be called either implicitly using the operator, or explicitly using the function name:

1
2
c = a + b;
c = a.operator+ (b);


Both expressions are equivalent.

Notice also that we have included the empty constructor (without parameters) and we have defined it with an empty block:

 
CVector () { };


This is necessary, since we have explicitly declared another constructor:

 
CVector (int, int);


And when we explicitly declare any constructor, with any number of parameters, the default constructor with no parameters that the compiler can declare automatically is not declared, so we need to declare it ourselves in order to be able to construct objects of this type without parameters. Otherwise, the declaration:

 
CVector c;


included in main() would not have been valid.

Anyway, I have to warn you that an empty block is a bad implementation for a constructor, since it does not fulfill the minimum functionality that is generally expected from a constructor, which is the initialization of all the member variables in its class. In our case this constructor leaves the variables x and y undefined. Therefore, a more advisable definition would have been something similar to this:

 
CVector () { x=0; y=0; };


which in order to simplify and show only the point of the code I have not included in the example.

As well as a class includes a default constructor and a copy constructor even if they are not declared, it also includes a default definition for the assignment operator (=) with the class itself as parameter. The behavior which is defined by default is to copy the whole content of the data members of the object passed as argument (the one at the right side of the sign) to the one at the left side:

1
2
3
CVector d (2,3);
CVector e;
e = d;           // copy assignment operator 


The copy assignment operator function is the only operator member function implemented by default. Of course, you can redefine it to any other functionality that you want, like for example, copy only certain class members or perform additional initialization procedures.

The overload of operators does not force its operation to bear a relation to the mathematical or usual meaning of the operator, although it is recommended. For example, the code may not be very intuitive if you use operator + to subtract two classes or operator== to fill with zeros a class, although it is perfectly possible to do so.

Although the prototype of a function operator+ can seem obvious since it takes what is at the right side of the operator as the parameter for the operator member function of the object at its left side, other operators may not be so obvious. Here you have a table with a summary on how the different operator functions have to be declared (replace @ by the operator in each case):

ExpressionOperatorMember functionGlobal function
@a+ - * & ! ~ ++ --A::operator@()operator@(A)
a@++ --A::operator@(int)operator@(A,int)
a@b+ - * / % ^ & | < > == != <= >= << >> && || ,A::operator@ (B)operator@(A,B)
a@b= += -= *= /= %= ^= &= |= <<= >>= []A::operator@ (B)-
a(b, c...)()A::operator() (B, C...)-
a->x->A::operator->()-
Where a is an object of class A, b is an object of class B and c is an object of class C.

You can see in this panel that there are two ways to overload some class operators: as a member function and as a global function. Its use is indistinct, nevertheless I remind you that functions that are not members of a class cannot access the private or protected members of that class unless the global function is its friend (friendship is explained later).

Comments

Popular posts from this blog

OWASP Top 10 Threats and Mitigations Exam - Single Select

Last updated 4 Aug 11 Course Title: OWASP Top 10 Threats and Mitigation Exam Questions - Single Select 1) Which of the following consequences is most likely to occur due to an injection attack? Spoofing Cross-site request forgery Denial of service   Correct Insecure direct object references 2) Your application is created using a language that does not support a clear distinction between code and data. Which vulnerability is most likely to occur in your application? Injection   Correct Insecure direct object references Failure to restrict URL access Insufficient transport layer protection 3) Which of the following scenarios is most likely to cause an injection attack? Unvalidated input is embedded in an instruction stream.   Correct Unvalidated input can be distinguished from valid instructions. A Web application does not validate a client’s access to a resource. A Web action performs an operation on behalf of the user without checking a shared sec

CKA Simulator Kubernetes 1.22

  https://killer.sh Pre Setup Once you've gained access to your terminal it might be wise to spend ~1 minute to setup your environment. You could set these: alias k = kubectl                         # will already be pre-configured export do = "--dry-run=client -o yaml"     # k get pod x $do export now = "--force --grace-period 0"   # k delete pod x $now Vim To make vim use 2 spaces for a tab edit ~/.vimrc to contain: set tabstop=2 set expandtab set shiftwidth=2 More setup suggestions are in the tips section .     Question 1 | Contexts Task weight: 1%   You have access to multiple clusters from your main terminal through kubectl contexts. Write all those context names into /opt/course/1/contexts . Next write a command to display the current context into /opt/course/1/context_default_kubectl.sh , the command should use kubectl . Finally write a second command doing the same thing into /opt/course/1/context_default_no_kubectl.sh , but without the use of k

标 题: 关于Daniel Guo 律师

发信人: q123452017 (水天一色), 信区: I140 标  题: 关于Daniel Guo 律师 关键字: Daniel Guo 发信站: BBS 未名空间站 (Thu Apr 26 02:11:35 2018, 美东) 这些是lz根据亲身经历在 Immigration版上发的帖以及一些关于Daniel Guo 律师的回 帖,希望大家不要被一些马甲帖广告帖所骗,慎重考虑选择律师。 WG 和Guo两家律师对比 1. fully refund的合约上的区别 wegreened家是case不过只要第二次没有file就可以fully refund。郭家是要两次case 没过才给refund,而且只要第二次pl draft好律师就可以不退任何律师费。 2. 回信速度 wegreened家一般24小时内回信。郭律师是在可以快速回复的时候才回复很快,对于需 要时间回复或者是不愿意给出确切答复的时候就回复的比较慢。 比如:lz问过郭律师他们律所在nsc区域最近eb1a的通过率,大家也知道nsc现在杀手如 云,但是郭律师过了两天只回复说让秘书update最近的case然后去网页上查,但是上面 并没有写明tsc还是nsc。 lz还问过郭律师关于准备ps (他要求的文件)的一些问题,模版上有的东西不是很清 楚,但是他一般就是把模版上的东西再copy一遍发过来。 3. 材料区别 (推荐信) 因为我只收到郭律师写的推荐信,所以可以比下两家推荐信 wegreened家推荐信写的比较长,而且每封推荐信会用不同的语气和风格,会包含lz写 的research summary里面的某个方面 郭家四封推荐信都是一个格式,一种语气,连地址,信的称呼都是一样的,怎么看四封 推荐信都是同一个人写出来的。套路基本都是第一段目的,第二段介绍推荐人,第三段 某篇或几篇文章的abstract,最后结论 4. 前期材料准备 wegreened家要按照他们的模版准备一个十几页的research summary。 郭律师在签约之前说的是只需要准备五页左右的summary,但是在lz签完约收到推荐信 ,郭律师又发来一个很长的ps要lz自己填,而且和pl的格式基本差不多。 总结下来,申请自己上心最重要。但是如果选律师,lz更倾向于wegreened,