Skip to main content

An Introduction to HAProxy and Load Balancing Concepts

Introduction

HAProxy, which stands for High Availability Proxy, is a popular open source software TCP/HTTP Load Balancer and proxying solution which can be run on Linux, Solaris, and FreeBSD. Its most common use is to improve the performance and reliability of a server environment by distributing the workload across multiple servers (e.g. web, application, database). It is used in many high-profile environments, including: GitHub, Imgur, Instagram, and Twitter.
In this guide, we will provide a general overview of what HAProxy is, basic load-balancing terminology, and examples of how it might be used to improve the performance and reliability of your own server environment.

HAProxy Terminology

There are many terms and concepts that are important when discussing load balancing and proxying. We will go over commonly used terms in the following sub-sections.
Before we get into the basic types of load balancing, we will talk about ACLs, backends, and frontends.

Access Control List (ACL)

In relation to load balancing, ACLs are used to test some condition and perform an action (e.g. select a server, or block a request) based on the test result. Use of ACLs allows flexible network traffic forwarding based on a variety of factors like pattern-matching and the number of connections to a backend, for example.
Example of an ACL:
acl url_blog path_beg /blog
This ACL is matched if the path of a user's request begins with /blog. This would match a request of http://yourdomain.com/blog/blog-entry-1, for example.
For a detailed guide on ACL usage, check out the HAProxy Configuration Manual.

Backend

A backend is a set of servers that receives forwarded requests. Backends are defined in the backendsection of the HAProxy configuration. In its most basic form, a backend can be defined by:
  • which load balance algorithm to use
  • a list of servers and ports
A backend can contain one or many servers in it--generally speaking, adding more servers to your backend will increase your potential load capacity by spreading the load over multiple servers. Increase reliability is also achieved through this manner, in case some of your backend servers become unavailable.
Here is an example of a two backend configuration, web-backend and blog-backend with two web servers in each, listening on port 80:
backend web-backend
   balance roundrobin
   server web1 web1.yourdomain.com:80 check
   server web2 web2.yourdomain.com:80 check

backend blog-backend
   balance roundrobin
   mode http
   server blog1 blog1.yourdomain.com:80 check
   server blog1 blog1.yourdomain.com:80 check
balance roundrobin line specifies the load balancing algorithm, which is detailed in the Load Balancing Algorithms section.
mode http specifies that layer 7 proxying will be used, which is explained in Types of Load Balancingsection.
The check option at the end of the server directives specifies that health checks should be performed on those backend servers.

Frontend

A frontend defines how requests should be forwarded to backends. Frontends are defined in the frontendsection of the HAProxy configuration. Their definitions are composed of the following components:
  • a set of IP addresses and a port (e.g. 10.1.1.7:80, *:443, etc.)
  • ACLs
  • use_backend rules, which define which backends to use depending on which ACL conditions are matched, and/or a default_backend rule that handles every other case
A frontend can be configured to various types of network traffic, as explained in the next section.

Types of Load Balancing

Now that we have an understanding of the basic components that are used in load balancing, let's get into the basic types of load balancing.

No Load Balancing

A simple web application environment with no load balancing might look like the following:
No Load Balancing
In this example, the user connects directly to your web server, at yourdomain.com and there is no load balancing. If your single web server goes down, the user will no longer be able to access your web server. Additionally, if many users are trying to access your server simultaneously and it is unable to handle the load, they may have a slow experience or they may not be able to connect at all.

Layer 4 Load Balancing

The simplest way to load balance network traffic to multiple servers is to use layer 4 (transport layer) load balancing. Load balancing this way will forward user traffic based on IP range and port (i.e. if a request comes in for http://yourdomain.com/anything, the traffic will be forwarded to the backend that handles all the requests for yourdomain.com on port 80). For more details on layer 4, check out the TCP subsection of our Introduction to Networking.
Here is a diagram of a simple example of layer 4 load balancing:
Layer 4 Load Balancing
The user accesses the load balancer, which forwards the user's request to the web-backend group of backend servers. Whichever backend server is selected will respond directly to the user's request. Generally, all of the servers in the web-backend should be serving identical content--otherwise the user might receive inconsistent content. Note that both web servers connect to the same database server.

Layer 7 Load Balancing

Another, more complex way to load balance network traffic is to use layer 7 (application layer) load balancing. Using layer 7 allows the load balancer to forward requests to different backend servers based on the content of the user's request. This mode of load balancing allows you to run multiple web application servers under the same domain and port. For more details on layer 7, check out the HTTPsubsection of our Introduction to Networking.
Here is a diagram of a simple example of layer 7 load balancing:
Layer 7 Load Balancing
In this example, if a user requests yourdomain.com/blog, they are forwarded to the blog backend, which is a set of servers that run a blog application. Other requests are forwarded to web-backend, which might be running another application. Both backends use the same database server, in this example.
A snippet of the example frontend configuration would look like this:
frontend http
  bind *:80
  mode http

  acl url_blog path_beg /blog
  use_backend blog-backend if url_blog

  default_backend web-backend
This configures a frontend named http, which handles all incoming traffic on port 80.
acl url_blog path_beg /blog matches a request if the path of the user's request begins with /blog.
use_backend blog-backend if url_blog uses the ACL to proxy the traffic to blog-backend.
default_backend web-backend specifies that all other traffic will be forwarded to web-backend.

Load Balancing Algorithms

The load balancing algorithm that is used determines which server, in a backend, will be selected when load balancing. HAProxy offers several options for algorithms. In addition to the load balancing algorithm, servers can be assigned a weight parameter to manipulate how frequently the server is selected, compared to other servers.
Because HAProxy provides so many load balancing algorithms, we will only describe a few of them here. See the HAProxy Configuration Manual for a complete list of algorithms.
A few of the commonly used algorithms are as follows:

roundrobin

Round Robin selects servers in turns. This is the default algorithm.

leastconn

Selects the server with the least number of connections--it is recommended for longer sessions. Servers in the same backend are also rotated in a round-robin fashion.

source

This selects which server to use based on a hash of the source IP i.e. your user's IP address. This is one method to ensure that a user will connect to the same server.

Sticky Sessions

Some applications require that a user continues to connect to the same backend server. This persistence is achieved through sticky sessions, using the appsession parameter in the backend that requires it.

Health Check

HAProxy uses health checks to determine if a backend server is available to process requests. This avoids having to manually remove a server from the backend if it becomes unavailable. The default health check is to try to establish a TCP connection to the server i.e. it checks if the backend server is listening on the configured IP address and port.
If a server fails a health check, and therefore is unable to serve requests, it is automatically disabled in the backend i.e. traffic will not be forwarded to it until it becomes healthy again. If all servers in a backend fail, the service will become unavailable until at least one of those backend servers becomes healthy again.
For certain types of backends, like database servers in certain situations, the default health check is insufficient to determine whether a server is still healthy.

Other Solutions

If you feel like HAProxy might be too complex for your needs, the following solutions may be a better fit:
  • Linux Virtual Servers (LVS) - A simple, fast layer 4 load balancer included in many Linux distributions
  • Nginx - A fast and reliable web server that can also be used for proxy and load-balancing purposes. Nginx is often used in conjunction with HAProxy for its caching and compression capabilities

High Availability

The layer 4 and 7 load balancing setups described before both use a load balancer to direct traffic to one of many backend servers. However, your load balancer is a single point of failure in these setups; if it goes down or gets overwhelmed with requests, it can cause high latency or downtime for your service.
A high availability (HA) setup is an infrastructure without a single point of failure. It prevents a single server failure from being a downtime event by adding redundancy to every layer of your architecture. A load balancer facilitates redundancy for the backend layer (web/app servers), but for a true high availability setup, you need to have redundant load balancers as well.
Here is a diagram of a basic high availability setup:
HA Setup
In this example, you have multiple load balancers (one active and one or more passive) behind a static IP address that can be remapped from one server to another. When a user accesses your website, the request goes through the external IP address to the active load balancer. If that load balancer fails, your failover mechanism will detect it and automatically reassign the IP address to one of the passive servers. There are a number of different ways to implement an active/passive HA setup. To learn more, read this section of How To Use Floating IPs.

Conclusion

Now that you have a basic understanding of load balancing and know of a few ways that HAProxy facilitate your load balancing needs, you have a solid foundation to get started on improving the performance and reliability of your own server environment.
The following tutorials provide detailed examples of HAProxy setups:
By Mitchell Anicas

Comments

Popular posts from this blog

OWASP Top 10 Threats and Mitigations Exam - Single Select

Last updated 4 Aug 11 Course Title: OWASP Top 10 Threats and Mitigation Exam Questions - Single Select 1) Which of the following consequences is most likely to occur due to an injection attack? Spoofing Cross-site request forgery Denial of service   Correct Insecure direct object references 2) Your application is created using a language that does not support a clear distinction between code and data. Which vulnerability is most likely to occur in your application? Injection   Correct Insecure direct object references Failure to restrict URL access Insufficient transport layer protection 3) Which of the following scenarios is most likely to cause an injection attack? Unvalidated input is embedded in an instruction stream.   Correct Unvalidated input can be distinguished from valid instructions. A Web application does not validate a client’s access to a resource. A Web action performs an operation on behalf of the user without checking a shared sec

CKA Simulator Kubernetes 1.22

  https://killer.sh Pre Setup Once you've gained access to your terminal it might be wise to spend ~1 minute to setup your environment. You could set these: alias k = kubectl                         # will already be pre-configured export do = "--dry-run=client -o yaml"     # k get pod x $do export now = "--force --grace-period 0"   # k delete pod x $now Vim To make vim use 2 spaces for a tab edit ~/.vimrc to contain: set tabstop=2 set expandtab set shiftwidth=2 More setup suggestions are in the tips section .     Question 1 | Contexts Task weight: 1%   You have access to multiple clusters from your main terminal through kubectl contexts. Write all those context names into /opt/course/1/contexts . Next write a command to display the current context into /opt/course/1/context_default_kubectl.sh , the command should use kubectl . Finally write a second command doing the same thing into /opt/course/1/context_default_no_kubectl.sh , but without the use of k

标 题: 关于Daniel Guo 律师

发信人: q123452017 (水天一色), 信区: I140 标  题: 关于Daniel Guo 律师 关键字: Daniel Guo 发信站: BBS 未名空间站 (Thu Apr 26 02:11:35 2018, 美东) 这些是lz根据亲身经历在 Immigration版上发的帖以及一些关于Daniel Guo 律师的回 帖,希望大家不要被一些马甲帖广告帖所骗,慎重考虑选择律师。 WG 和Guo两家律师对比 1. fully refund的合约上的区别 wegreened家是case不过只要第二次没有file就可以fully refund。郭家是要两次case 没过才给refund,而且只要第二次pl draft好律师就可以不退任何律师费。 2. 回信速度 wegreened家一般24小时内回信。郭律师是在可以快速回复的时候才回复很快,对于需 要时间回复或者是不愿意给出确切答复的时候就回复的比较慢。 比如:lz问过郭律师他们律所在nsc区域最近eb1a的通过率,大家也知道nsc现在杀手如 云,但是郭律师过了两天只回复说让秘书update最近的case然后去网页上查,但是上面 并没有写明tsc还是nsc。 lz还问过郭律师关于准备ps (他要求的文件)的一些问题,模版上有的东西不是很清 楚,但是他一般就是把模版上的东西再copy一遍发过来。 3. 材料区别 (推荐信) 因为我只收到郭律师写的推荐信,所以可以比下两家推荐信 wegreened家推荐信写的比较长,而且每封推荐信会用不同的语气和风格,会包含lz写 的research summary里面的某个方面 郭家四封推荐信都是一个格式,一种语气,连地址,信的称呼都是一样的,怎么看四封 推荐信都是同一个人写出来的。套路基本都是第一段目的,第二段介绍推荐人,第三段 某篇或几篇文章的abstract,最后结论 4. 前期材料准备 wegreened家要按照他们的模版准备一个十几页的research summary。 郭律师在签约之前说的是只需要准备五页左右的summary,但是在lz签完约收到推荐信 ,郭律师又发来一个很长的ps要lz自己填,而且和pl的格式基本差不多。 总结下来,申请自己上心最重要。但是如果选律师,lz更倾向于wegreened,