Skip to main content

Python @property

Python has a great concept called property which makes the life of an object oriented programmer much simpler.
Before defining and going into details of what @property is, let us first build an intuition on why it would be needed in the first place.

An Example To Begin With

Let us assume that you decide to make a class that could store the temperature in degree Celsius. It would also implement a method to convert the temperature into degree Fahrenheit. One way of doing this is as follows.
1
2
3
4
5
6
class Celsius:
def __init__(self, temperature = 0):
self.temperature = temperature
def to_fahrenheit(self):
return (self.temperature * 1.8) + 32
We could make objects out of this class and manipulate the attribute temperature as we wished. Try these on Python shell.
The extra decimal places when converting into Fahrenheit is due to the floating point arithmetic error (try 1.1 + 2.2 in the Python interpreter).
Whenever we assign or retrieve any object attribute like temperature, as show above, Python searches it in the object's __dict__ dictionary.
Therefore, man.temperature internally becomes man.__dict__['temperature'].
Now, let's further assume that our class got popular among clients and they started using it in their programs. They did all kinds of assignments to the object.
One fateful day, a trusted client came to us and suggested that temperatures cannot go below -273 degree Celsius (students of thermodynamics might argue that it's actually -273.15), also called the absolute zero. He further asked us to implement this value constraint. Being a company that strive for customer satisfaction, we happily heeded the suggestion and released version 1.01 (an upgrade of our existing class).

Using Getters and Setters

An obvious solution to the above constraint will be to hide the attribute temperature (make it private) and define new getter and setter interfaces to manipulate it. This can be done as follows.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
class Celsius:
def __init__(self, temperature = 0):
self.set_temperature(temperature)
def to_fahrenheit(self):
return (self.get_temperature() * 1.8) + 32
# new update
def get_temperature(self):
return self._temperature
def set_temperature(self, value):
if value < -273:
raise ValueError("Temperature below -273 is not possible")
self._temperature = value
We can see above that new methods get_temperature() and set_temperature() were defined and furthermore, temperature was replaced with _temperature. An underscore (_) at the beginning is used to denote private variables in Python.
This update successfully implemented the new restriction. We are no longer allowed to set temperature below -273.
Please note that private variables don't exist in Python. There are simply norms to be followed. The language itself don't apply any restrictions.
But this is not of great concern. The big problem with the above update is that, all the clients who implemented our previous class in their program have to modify their code from obj.temperature to obj.get_temperature() and all assignments like obj.temperature = valto obj.set_temperature(val).
This refactoring can cause headaches to the clients with hundreds of thousands of lines of codes.
All in all, our new update was not backward compatible. This is where property comes to rescue.

The Power of @property

The pythonic way to deal with the above problem is to use property. Here is how we could have achieved it.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
class Celsius:
def __init__(self, temperature = 0):
self.temperature = temperature
def to_fahrenheit(self):
return (self.temperature * 1.8) + 32
def get_temperature(self):
print("Getting value")
return self._temperature
def set_temperature(self, value):
if value < -273:
raise ValueError("Temperature below -273 is not possible")
print("Setting value")
self._temperature = value
temperature = property(get_temperature,set_temperature)
And, issue the following code in shell once you run it.

We added a print() function inside get_temperature() and set_temperature() to clearly observe that they are being executed.
The last line of the code, makes a property object temperature. Simply put, property attaches some code (get_temperature and set_temperature) to the member attribute accesses (temperature).
Any code that retrieves the value of temperature will automatically call get_temperature()instead of a dictionary (__dict__) look-up. Similarly, any code that assigns a value to temperature will automatically call set_temperature(). This is one cool feature in Python.
We can see above that set_temperature() was called even when we created an object.
Can you guess why?
The reason is that when an object is created, __init__() method gets called. This method has the line self.temperature = temperature. This assignment automatically called set_temperature().
Similarly, any access like c.temperature automatically calls get_temperature(). This is what property does. Here are a few more examples.
By using property, we can see that, we modified our class and implemented the value constraint without any change required to the client code. Thus our implementation was backward compatible and everybody is happy.
Finally note that, the actual temperature value is stored in the private variable _temperature. The attribute temperature is a property object which provides interface to this private variable.

Digging Deeper into Property

In Python, property() is a built-in function that creates and returns a property object. The signature of this function is
where, fget is function to get value of the attribute, fset is function to set value of the attribute, fdel is function to delete the attribute and doc is a string (like a comment). As seen from the implementation, these function arguments are optional. So, a property object can simply be created as follows.
A property object has three methods, getter()setter(), and delete() to specify fgetfset and fdel at a later point. This means, the line
could have been broken down as
These two pieces of codes are equivalent.
Programmers familiar with decorators in Python can recognize that the above construct can be implemented as decorators.
We can further go on and not define names get_temperature and set_temperature as they are unnecessary and pollute the class namespace. For this, we reuse the name temperaturewhile defining our getter and setter functions. This is how it can be done.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
class Celsius:
def __init__(self, temperature = 0):
self._temperature = temperature
def to_fahrenheit(self):
return (self.temperature * 1.8) + 32
@property
def temperature(self):
print("Getting value")
return self._temperature
@temperature.setter
def temperature(self, value):
if value < -273:
raise ValueError("Temperature below -273 is not possible")
print("Setting value")
self._temperature = value
The above implementation is both, simple and recommended way to make properties. You will most likely encounter these types of constructs when looking for property in Python

Comments

Popular posts from this blog

OWASP Top 10 Threats and Mitigations Exam - Single Select

Last updated 4 Aug 11 Course Title: OWASP Top 10 Threats and Mitigation Exam Questions - Single Select 1) Which of the following consequences is most likely to occur due to an injection attack? Spoofing Cross-site request forgery Denial of service   Correct Insecure direct object references 2) Your application is created using a language that does not support a clear distinction between code and data. Which vulnerability is most likely to occur in your application? Injection   Correct Insecure direct object references Failure to restrict URL access Insufficient transport layer protection 3) Which of the following scenarios is most likely to cause an injection attack? Unvalidated input is embedded in an instruction stream.   Correct Unvalidated input can be distinguished from valid instructions. A Web application does not validate a client’s access to a resource. A Web action performs an operation on behalf of the user without checking a shared sec

CKA Simulator Kubernetes 1.22

  https://killer.sh Pre Setup Once you've gained access to your terminal it might be wise to spend ~1 minute to setup your environment. You could set these: alias k = kubectl                         # will already be pre-configured export do = "--dry-run=client -o yaml"     # k get pod x $do export now = "--force --grace-period 0"   # k delete pod x $now Vim To make vim use 2 spaces for a tab edit ~/.vimrc to contain: set tabstop=2 set expandtab set shiftwidth=2 More setup suggestions are in the tips section .     Question 1 | Contexts Task weight: 1%   You have access to multiple clusters from your main terminal through kubectl contexts. Write all those context names into /opt/course/1/contexts . Next write a command to display the current context into /opt/course/1/context_default_kubectl.sh , the command should use kubectl . Finally write a second command doing the same thing into /opt/course/1/context_default_no_kubectl.sh , but without the use of k

标 题: 关于Daniel Guo 律师

发信人: q123452017 (水天一色), 信区: I140 标  题: 关于Daniel Guo 律师 关键字: Daniel Guo 发信站: BBS 未名空间站 (Thu Apr 26 02:11:35 2018, 美东) 这些是lz根据亲身经历在 Immigration版上发的帖以及一些关于Daniel Guo 律师的回 帖,希望大家不要被一些马甲帖广告帖所骗,慎重考虑选择律师。 WG 和Guo两家律师对比 1. fully refund的合约上的区别 wegreened家是case不过只要第二次没有file就可以fully refund。郭家是要两次case 没过才给refund,而且只要第二次pl draft好律师就可以不退任何律师费。 2. 回信速度 wegreened家一般24小时内回信。郭律师是在可以快速回复的时候才回复很快,对于需 要时间回复或者是不愿意给出确切答复的时候就回复的比较慢。 比如:lz问过郭律师他们律所在nsc区域最近eb1a的通过率,大家也知道nsc现在杀手如 云,但是郭律师过了两天只回复说让秘书update最近的case然后去网页上查,但是上面 并没有写明tsc还是nsc。 lz还问过郭律师关于准备ps (他要求的文件)的一些问题,模版上有的东西不是很清 楚,但是他一般就是把模版上的东西再copy一遍发过来。 3. 材料区别 (推荐信) 因为我只收到郭律师写的推荐信,所以可以比下两家推荐信 wegreened家推荐信写的比较长,而且每封推荐信会用不同的语气和风格,会包含lz写 的research summary里面的某个方面 郭家四封推荐信都是一个格式,一种语气,连地址,信的称呼都是一样的,怎么看四封 推荐信都是同一个人写出来的。套路基本都是第一段目的,第二段介绍推荐人,第三段 某篇或几篇文章的abstract,最后结论 4. 前期材料准备 wegreened家要按照他们的模版准备一个十几页的research summary。 郭律师在签约之前说的是只需要准备五页左右的summary,但是在lz签完约收到推荐信 ,郭律师又发来一个很长的ps要lz自己填,而且和pl的格式基本差不多。 总结下来,申请自己上心最重要。但是如果选律师,lz更倾向于wegreened,